
MATERNAL AND CHILDHOOD NUTRITION (AC WOOD, SECTION EDITOR)

Multi-etiological Perspective on Child Obesity Prevention

Tom Baranowski1 & Kathleen J. Motil1 & Jennette P. Moreno1

# This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Abstract
Purpose of Review The simple energy balance model of obesity is inconsistent with the available findings on obesity etiology,
prevention, and treatment. Yet, the most commonly stated causes of pediatric obesity are predicated on this model. A more
comprehensive biological model is needed upon which to base behavioral interventions aimed at obesity prevention. In this light,
alternative etiologies are little investigated and thereby poorly understood.
Recent Findings Three candidate alternate etiologies are briefly presented: infectobesity, the gut microbiome, and circadian rhythms.
Summary Behavioral child obesity preventive investigators need to collaborate with biological colleagues to more intensively
analyze the behavioral aspects of these etiologies and to generate innovative procedures for preventing a multi-etiological
problem, e.g., group risk analysis, triaging for likely causes of obesity.
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Introduction

Obesity is currently the most common nutrition-related dis-
ease in the USA and a growing problem worldwide [1]. Given
the high prevalence of obesity among adults (36%) [2], the
general inability of obese individuals to achieve sustained
weight loss [3], and the fact that obesity often starts in child-
hood [4], obesity prevention needs to target children.
Overweight and obesity prevalence has steadily increased
across childhood (2–19 years) in the USA [5], although re-
cently the prevalence has been erratic among 2–5-year-olds
and appears to have stabilized among 6–11-year-olds, while
continuing to steadily increase among 12–19-year-olds [5].
Unfortunately, most of the existing child obesity prevention
programs have had very small effects, with high heterogene-
ity; across studies, somewhat small effects have been observed
among the 0–5-year-olds, but no effect among 13–18-year-
olds [6]. Many of the shortcomings of the child obesity

prevention trials have been delineated, including limits on
our understanding of behavioral and environmental influences
[7•]. Consistent with this, the dose of behavioral intervention
was not related to outcome across the 133 studies included [8].
No or small effects have also been detected across multiple
child obesity treatment trials [9]. Diet [10] and physical activ-
ity [11] behaviors, core behaviors which contribute to child-
hood weight status, have also proven remarkably intractable.

The resistance of populations to current obesity interven-
tions has encouraged professionals to design ever more com-
prehensive and complex behavioral and environmental inter-
ventions, the latest employing systems modeling [12, 13].
While the jury remains to be convened on these latest efforts,
the primary shortcoming may be understanding the underly-
ing biological mechanism(s) causing obesity. Delineating the
biological etiology of obesity should lead to more effective
child obesity prevention. This paper admonishes those design-
ing, implementing, evaluating, and/or otherwise researching
behavioral and environmental-based child obesity prevention
efforts to consider little studied etiologies, engage in research
exploring those etiologies, and investigate the changes in
practice they may imply.

Simple Energy Balance or Multi-etiological?

The biological model currently underpinning childhood obe-
sity prevention interventions has been a simple energy balance
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model. Ludwig and Ebbeling [14••] clearly specified this
model indicating the difference in energy intake and expendi-
ture influenced circulating fuels which led to fat storage (or fat
depletion). Within this conceptualization, excessive caloric
intake is a result of “ubiquitous tasty foods,” overwhelming
eating self-regulation, and the attractions of physical inactivity
minimizing energy expenditure. Consistent with this model,
virtually all childhood obesity prevention programs have
attempted to influence children simply to consume fewer cal-
ories and increase activity to expend more calories, in the
expectation that that difference will directly linearly affect
adiposity. As indicated above, interventions based on this
model have generally had little or no effect [6].

Ludwig and Ebbeling [14••] immediately dismissed their
first model for reasons beyond just poor self-control. They
recognized physiological adaptations, e.g., hormonal re-
sponses, in response to weight loss which work to return the
body to a higher weight. In their second, preferred, model, the
direction of influence reverses: dietary carbohydrates increase
insulin secretion which directly leads to increased fat storage,
which decreases circulating fuels, which leads to hunger and
further increased energy intake and decreased energy expen-
diture [14••]. If this were the accepted model, child obesity
prevention would focus on reducing carbohydrate intake and/
or otherwise mitigating the influence of insulin.

In a companion article, however, Hall, Guyenet, and Leibel
[15••] dismissed the insulin-based model as not being consis-
tent with the literature on the biology of obesity. For example,
the insulin model ignores both “neuroendocrine mechanisms
that regulate energy homeostasis, genetic and epigenetic and
other influences on obesity.” They reported a lack of evidence
that low-carbohydrate diets resulted in more weight loss than
other diets [15••]. Hall and colleagues concluded “We believe
that obesity is an etiologically more heterogeneous disorder
that includes combinations of genetic, metabolic, hormonal,
psychological, behavioral, environmental, economic, and so-
cietal factors” [15••]. From this perspective, there is not one,
or even a primary, but many causes of obesity.

While individual or family-focused energy balance-related
changes in diet and physical activity are the current tools of
first choice for obesity treatment [16], obesity prevention re-
quires identifying the major influencing factors and changing
them. While some human adiposity may involve the simple
difference between energy in and energy out, many factors
(other than self-control or self-regulation) influence energy
in and out and metabolic processes occurring within the indi-
vidual. For example, multiple complex hormones (e.g., insu-
lin, ghrelin, leptin) are generated by different organs in re-
sponse to different aspects of food intake, and interact with
other circulating hormones, which are interpreted in the brain,
and in turn influence food intake [17]. Adipose tissue is one
source of these circulating hormones, e.g., leptin, and some
environmental pollutants disrupt energy balance which may

minimize the ability to prevent obesity [18]. Inadequate self-
control in the face of attractive environmental options may
account for some, but not all, and perhaps not evenmost, cases
of obesity. Many possible etiologic models of obesity have
been identified [19, 20]. Others have identified a likely
multi-etiological situation for obesity [21]. A few alternatives
to the simple energy balance model are briefly considered.

Genes

The heritability of BMI in childhood varies, with herita-
bility estimates ranging from a moderate ~ 42% (at 4 years
of age in both genders) up to ~ 85% (at 10 years of age in
boys and 16 years of age in girls) [22]. Genetic variants
likely influence obesity risk by affecting both behavioral
and metabolic processes, but identifying the specific ge-
netic variants has proven challenging. Ninety-seven BMI-
associated genetic variants from the largest meta-analysis
of genome-wide association studies (GWAS) combined
explained less than 3% of the variation in BMI [23].
Seventy-five percent of the newly identified BMI-raising
alleles in this study were expressed in the brain, with
expression enrichment in the hypothalamus and pituitary
gland, sites of appetite control, further supporting that
these help regulate eating or physical activity behaviors
[24]. However, the influence of these 97 gene variants on
BMI and waist circumference was only partially mediated
by disinhibition and susceptibility to hunger [25].
Although expression enrichment was seen in centers re-
lated to appetite control, stronger enrichment was seen for
genes expressed in the hippocampus and limbic system—
tissues that play key roles in learning and memory.
Several appetitive behaviors, e.g., eating in the absence
of hunger and the reinforcing value of food (how hard
one is willing to work for food), are heritable [26].
However, with the exception of rs9939609 in the Fat
Mass and Associated (FTO) gene, which is consistently
associated with child appetitive traits and has been asso-
ciated with increased energy intake from fat [27–33],
studies have yet to identify variants that robustly associate
with appetitive behaviors [26, 34]. Since influences on
obesity and the associated energy balance behaviors are
genetically multifactorial [35], and our current under-
standing of genetic etiology is very complex [36, 37],
genetics probably do not provide a clear foundation for
obesity prevention in the near future.

Other biological models provide mechanisms which could
lead to child obesity prevention interventions in the near term.
While each may not have been definitively identified as a
cause of some cases of obesity, each has shown extensive
promising results and thereby provides a possible model de-
serving further research to clearly delineate the implications
and test child obesity prevention procedures.
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Infectobesity

One of the most unexpected likely causes of obesity is infec-
tion from select viruses, generally called infectobesity [38••].
While having obesity appears to make individuals more sus-
ceptible to infection [39], specific viruses have been identified
that likely cause some cases of obesity [38••]. Meta-analysis
of 16 studies revealed statistically significant odds ratio of 2.0
for obesity and a standardized mean difference of 0.28 for
BMI when people with a demonstrated infection from
adenovirus-36 were compared with those who did not [40].
Among several diverse effects, infection by the virus appears
to increase obesity by signaling stem cells to become adipo-
cytes, thereby increasing adipose cell number [38••]. In addi-
tion, adenovirus-36 alters fat and carbohydrate metabolism by
decreasing fatty acid oxidation, increasing fat synthesis, and
increasing cellular uptake of glucose and its conversion to
fatty acids, the net result being increased adipose cell size
[41, 42]. Finally, adenovirus-36 reduces leptin expression
and secretion which may, in turn, have an obesogenic effect
through increased food intake or decreased energy expendi-
ture via altered fat metabolism [41]. Other viral infections
have also been implicated in obesity [38••, 43], and the effects
of viral agents may be stronger among children than adults
[44]. If and when viral infections are demonstrated to cause
sufficiently severe adiposity in substantially large numbers of
people, obesity prevention programs would likely focus on
enhancing avoidance (e.g., handwashing, sneezing into the
back side of the elbow) [45] at times of outbreaks and pro-
moting resistance to infection (e.g., moderate exercise [46]).
When (or if) a vaccine appears, programs to encourage ade-
novirus vaccination would be important. Behavioral child
obesity prevention experts could usefully collaborate with
“infectobesity” experts, to better understand how exposure
to the virus could be prevented, and whether this leads to
lower incidence of child obesity.

Microbiome

The human body is host to a very large number and variety of
microorganisms called the microbiome. Bacteria represent the
major constituents of the microbiome with large numbers of
organisms found in the colon and smaller numbers residing in
the small intestine [47, 48]. Current research suggests that
phylum-specific changes in the enteric microbiome might be
significant indicators for childhood obesity.

In this regard, children with more Firmicutes, i.e., micro-
organisms that efficiently convert eaten polysaccharides (i.e.,
complex carbohydrates and dietary fiber) into digestible ener-
gy, were more likely to be obese, while those with more
Bacteroidetes bacteria, which are less efficient at this conver-
sion, were more likely to be lean [49]. Participants with more
bacteria in their gut that efficiently converted carbohydrates to

short-chain fatty acids lost less than 5% of their body weight
in a weight loss trial [50]. Children receiving multiple antibi-
otics before age 24 months (which disrupts healthy microbial
growth) were more likely to be obese later in life [51••].
Children receiving more types of antibiotics and acid suppres-
sion medications during the first 2 years of life were more
likely to have increased obesity risk in childhood [52]. A
strong case implicating the microbiome in the etiology of obe-
sity has been made from rodent studies showing that permu-
tations of transporting sections of the microbiome from obese
animals to germ-free animals induced obesity, while
transporting sections of the microbiome from lean animals
did not [53••]. Within an ecological perspective, the use of
household disinfectants early in life influenced BMI z-score
at age 3, which was mediated by changes in the profile of gut
microbiota [54]. The pattern of types of gut microbiota at
2 years of age explained over 50% of the variation in obesity
at 12 years of age in Norway [55].

The biological pathways from the microbiome to obesity
are not clearly known [56], but likely include increased energy
harvesting from absorption of metabolites of the gut microbe
action on food eaten, and numerous nervous and endocrine
system mechanisms influencing appetite, food intake, and en-
ergy balance [56, 57]. Manipulations of gut microbiota influ-
ence emotional responses and lead to neurochemical brain
changes, altered taste receptors, and hyperphagia in animal
models [58]. All these and related influences (e.g., inflamma-
tion, gut permeability, genes, immune system, diet) are com-
plexly interrelated, but the microbiome appears to play a cen-
tral role [58]. A healthy microbiome would appear to include
greater diversity in the component bacteria, greater abundance
of Bifidobacteria and Lactobacillus, and more short-chain fat-
ty acid production [57]. Although microbiome research faces
many threats to internal and external validity [59•], obesity
prevention researchers will be expert in facing many of these
challenges with human populations and thereby can assist
biological colleagues in understanding and manipulating these
obesity-influencing factors.

To definitively relate the microbiome to cases of obesity,
behavioral obesity prevention investigators will likely encour-
age dietary changes related to a healthier microbiome.
Extensive literature demonstrates many diverse and complex
dietary influences (type, amount, and timing) on the
microbiome and moderating microbiome effects on health
outcomes [60]. At the beginning of life, breastfeeding ap-
peared to be protective of being overweight by encouraging
healthier microbiome bacteria; formula feeding was associat-
ed with increased risk of overweight and encouragement of
less healthy bacteria; and the introduction of complementary
foods without formula produced a pattern similar to those
exclusively breastfed for 3 months [61]. Meta-analyses re-
vealed that RCTs with higher (vs. lower) fiber diets had de-
tectable desirable effects on the abundance of Bifidobacteria
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and Lactobacilli [62]; and that supplementation with
probiotics resulted in weighted mean differences of − 0.60 in
bodyweight, − 0.27 in BMI, and − 0.60 in body fat percentage
after only 3–12 weeks of exposure [63]. At least one fruit
prevented weight gain by changing the proportions of micro-
biota in the guts of mice and increasing energy expenditure
[64]. Some baseline types of microbiota impaired the effec-
tiveness of a calorie-restricted (i.e., weight loss) diet in mice
[65], and may do so among humans, but this requires more
intensive investigation. Exercise has also been demonstrated
to influence the microbiome [66], which also deserves more
human research. An obvious behavioral dimension was
disclosed when most parents minimized concern for an in-
creased risk of obesity from taking an antibiotic when their
child was faced with a symptomatic infectious illness [67].

Circadian Rhythms

In contrast to common belief, some elementary schoolchildren
gained weight in the summer and others lost it during the
school year, despite little evidence that diet or physical activity
patterns seasonally vary in the same directions [68]. A subset
of elementary schoolchildren started to gain weight in the
summer after kindergarten, and went on to become obese,
while another subset did so starting in the summer after second
grade [69•]. Circadian rhythms [70••, 71, 72••, 73, 74], sleep
duration, and quality [75–83] also vary by season.

Circadian rhythms have a cycle of about 24 h which are
synchronized with environmental cues (e.g., light/dark)
allowing humans to adapt to changes (e.g., travel between
time zones and seasonal changes) [70••]. The suprachiasmatic
nucleus (SCN) located in the brain is the primary synchronizer
of the body’s biological rhythms. The SCN receives light in-
put via photoreceptors in the eyes that provide information
about the time of day [84••]. The SCN sends signals to the
clocks in other tissues throughout the brain and body (i.e.,
peripheral clocks), helping to synchronize the body’s biolog-
ical rhythms to ensure processes (e.g., metabolism (i.e., the
chemical processes which maintain life), adipogenesis (i.e.,
the process of cell differentiation by which pre-fat cells be-
come fat cells), and lipolysis (i.e., the breakdown of fats to
release fatty acids)) and behaviors (e.g., sleeping, wake, and
eating) occur at biologically advantageous times. While food-
related circadian rhythms are controlled by the peripheral
clocks and partially entrained (i.e., regulated) by food intake
[85•, 86–89], the central body clock coordinates optimal
timing of food intake with other bodily functions [90••].

Melatonin, released by the pineal gland, signals the sleep-
related part of the daily cycle in humans and the wake phase in
nocturnal mammals [90••]. The release of melatonin is sig-
naled by the SCN in a circadian manner and is highly respon-
sive to light exposure [91, 92]. Melatonin receptors, found in
the central nervous and cardiovascular systems, liver, skin,

pancreas, skeletal muscle, and adipocyte cells [90, 93], are
one way the SCN synchronizes the body’s rhythms.

In regard to seasonal weight gain, melatonin synchronizes
metabolic function of the adipocytes (i.e., fat cells) for high
lipogenesis (i.e., the formation of fat) during the melatonin
phase and high lipolysis during the absence of melatonin
[94]. This synchronization also occurs through sympathetic
activation of white adipose tissue [95]. Among hamsters, short
winter-like days led to longer nocturnal melatonin release,
with greater stimulation of melatonin receptors in the fore-
brain, which is part of the sympathetic innervation of white
adipose tissue. This increase in the sympathetic activation of
white adipose tissue resulted in lipolysis and a decrease in
seasonal adiposity [95]. Melatonin-induced browning of
white adipose tissue in rodents [96] increased their thermo-
genic activity [97], whichmay explain seasonal weight chang-
es in response to seasonal changes in day length [98••]. While
high levels of leptin and low levels of adiponectin have been
related to obesity, shortened release of melatonin, resulting
from shortened sleep duration and exposure to artificial light
at night, counteracts these obesogenic aspects of leptin and
adiponectin, and influences body weight [90••]. Children’s
melatonin rhythms during summer may also be shortened
due to the absence of school year demands, i.e., bedtimes
are later [99, 100], and parents are likely to be more lenient
on limits in screen media use, contributing to increased expo-
sure to artificial light at night. In humans, melatonin supple-
mentation moderated long-term weight gain and augmented
weight loss for individuals on a low-calorie diet [101•].

Summer shifts in sleep, eating patterns, and screen media
use may result in circadian misalignment which has been as-
sociated with increased adiposity, mediated by the mistiming
of behavioral rhythms with endogenous rhythms [71, 84••,
102]. Misalignment of behavioral rhythms with endogenous
rhythms has been associated with changes in metabolism and
development of obesity [71, 72••, 73]. Proper timing within
the adipocyte is important for adipogenesis and lipolysis
[103]. Because food intake is the primary source of energy
for adipose tissue, changes in the timing of food relative to
adipose tissue phase may lead to changes in the extent of
adipogenesis resulting from food intake, and so either weight
gain or weight loss [72••]. Eating later in the day results in
acute exposure to higher postprandial blood glucose levels,
compared with eating earlier on, with higher blood glucose
levels persisting through the following morning [104, 105].
Long-term dysregulation of glucose levels may lead to alter-
ations in caloric intake and storage which have also been at-
tributed to shortened sleep duration [106], suggesting that the
mistiming of eating and sleep/wake patterns with endogenous
rhythms may increase risk for obesity [107].

The gut microbiome also exhibits circadian rhythmicity
controlled by food intake patterns [108•]. The microbiome
shifts rapidly based on the typical feeding/fasting pattern, as
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well as the type of food eaten [109–112]. Altered feeding
patterns disrupt the rhythmicity of the gut microbiome
[108•]. For example, mice transplanted with the gut
microbiome of jetlagged humans did not increase their food
intake, but demonstrated increased weight gain and lower glu-
cose tolerance [108•]. Thus, changes in the timing of food
intake may lead to weight gain through alterations in the cir-
cadian timing of the gut microbiome. However, disruption of
the microbiome itself may alter host metabolic function by
modulating circadian clock gene expression through varia-
tions in microbe-derived metabolites from dietary manipula-
tion [110, 113]. Thus, perturbations in the gut microbiome
may adversely affect circadian clock networks that lead to
metabolic disturbances including diet-induced obesity.
Future research should also examine how disturbed rhythmic-
ity of the microbiome affects eating patterns.

Circadian misalignment through changes in the timing of
light exposure and sleep/wake and feeding patterns is likely
influential in unhealthy weight gain. Behavioral obesity pre-
vention interventions may focus on promoting consistent
sleep timing on both scheduled (e.g., school) and free days,
optimal duration of sleep, limiting exposure to artificial light
in the evenings [114], encouraging light exposure in the morn-
ing [115], encouraging physical activity (to enhance evening
fatigue) [116–119], limiting caffeine intake in the afternoon
and evening [120], promoting an overnight fast by limiting
food intake in the evening [121], and maintaining consistent
meal patterns even on non-school days [121].

Steps Forward

Amulti-etiological approach to child obesity complicates pre-
vention. No single biological model likely accounts for all
cases, and thus, no single intervention appears likely to pre-
vent all cases. Thus, obesity prevention interventions that ma-
nipulate energy balance as the single etiological pathway for
all children appear misguided. Instead, the most common and/
or the strongest influences on childhood obesity must be iden-
tified; next-generation interventions developed and tested that
mitigate those influences; and triage mechanisms developed
to attribute cases to likely causes, or to identify those at highest
risk for the different causes, for which to provide the most
likely to be effective preventive intervention. Large-data stat-
isticians may analyze large clinical care data sets of children to
identify subsets of children who transition from lean to the
obese status to identify patterns and correlates of patterns for
more intensive analysis.

While some interventions (e.g., moderate physical activity)
may be preventive across a number of etiologies, most next-
generation interventions will likely be cause specific. This
shifts the efforts of prevention and behavioral scientists from
delineating the causal behavioral and environmental energy
balance pathways, including excessive dietary intake and

inadequate energy expenditure, to working with biological
colleagues to better understand which are the most common
or strongest influences and help design and test next-
generation interventions appropriate to these influences. For
example, microbiome-related obesity prevention research
could test the effects of different types of diet (e.g., probiotics)
and physical activity on the development of obesity mediated
by their influence on the microbiome, while identifying child
characteristics that appear to predispose to or mitigate effec-
tiveness [122•]. While linking etiological sources and obesity
treatments would appear to be reasonably straightforward,
child obesity prevention will likely require generating risk
profiles for groups (e.g., children in categories of day care
centers) and applying multiple preventive procedures for the
highest probability causes.

With all of these (and more) possible etiologies, it is likely
that any one individual is subject to more than one at any time,
i.e., etiologies working in parallel. It appears likely that some
may work in combination, i.e., an interaction effect, wherein
each etiology has an enhanced effect in the presence of select
other etiologies. A hypothetical example would be
infectobesity having the biggest impact in the presence of a
high-fat diet. Significant interactions have been reported
among influences on obesity, including the home food or
physical activity environment moderating heritability of obe-
sity among young children [123] and variations in geographic
location in a province moderated the effect of the microbiome
on indicators of metabolic disease [124].

Research has attempted to isolate the effect(s) of one etiol-
ogy at a time. While this may be possible in controlled labora-
tory research with animals, among humans, multiple etiologies
are likely operative.While biological systemsmodelingmay be
able to account for these combinations of influences in the
future, we probably do not know enough to effectively model
them now. As the etiologies become causally implicated in the
onset of obesity, research on any one etiology will need to
account for the other known causal etiologies. An implication
for prevention would be that no single procedure designed to
prevent obesity for a specific etiology will be sufficient.
Instead, prevention efforts will likely need to implement pro-
cedures to mitigate the effects of more than one etiology for
which a target group is estimated to be at high risk.

New biological models not involving lack of self-control
should minimize the problems of fat shaming [125] and bul-
lying [126] since obesity becomes a medical problem/chronic
disease, and not due to one’s inability to self-regulate behav-
ior. To the extent that weight stigma leads to eating disorders
[127], the shift to new biological models may have positive
externalities in this area, as well.

Switching to new biological models will change the control
behavioral scientists have exercised over child obesity preven-
tion research. When the biological model was assumed to be
simple, easily understood, and amenable to volitional control
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(diet, physical activity, self-regulation), behavioral scientists
controlled the research agenda to find ways to manipulate the
targeted behaviors and thereby influence adiposity/obesity.
With the biology becoming more complex and perhaps min-
imally influenced by behaviors, behavioral prevention scien-
tists must share control of the research agenda. At a minimum,
behavioral scientists have to partner with biological scientists,
who will be the lead scientists until the behaviors needing
change are clearly delineated. Behavior scientists will likely
resist losing control from accepting these new biological
models upon which to predicate obesity prevention interven-
tions. However, not getting involved in these new exciting
lines of research could sideline behavioral scientists from fu-
ture child obesity prevention.

As we can identify different obesity etiologies, and separate
them from remaining cases, it should become easier to identify
that subset of people for whom lack of dietary self-control and
the attractions of inactivity do overwhelm our behavioral prac-
tices. At that time, we can retest our current forms of child
obesity prevention interventions with an expectation of greater
likelihood of success.

Conclusion

Child obesity prevention programs that utilize new biological
insights to target and tailor behavior change procedures offer
promise of more effective obesity prevention, thereby mini-
mizing the toll of the currently escalating epidemic.
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